Experimental and LSP modeling study of pre-pulse effects on the laser-plasma interaction by using a 527 nm laser pulse

G. Elijah Kemp

53rd Annual Meeting of the APS Division of Plasma Physics
November 14-18, 2011 – Salt Lake City, Utah

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

LLNL-PRES-512689
Acknowledgements

C. Chen, D. Hey, D.P. Higginson, M. Key, A. Link, H.S. Mclean, P.K. Patel, Y. Ping and B. Westover

F.N. Beg, C. Jarrott and A. Sorokovikova

R.B. Stephens

I. Bush and J. Pasley

This work was supported by the OFES-NNSA Joint Program in High-Energy-Density Laboratory Plasmas and by an allocation of computing time from the Ohio Supercomputer Center and LLNL grand challenge
Motivation

• Is a high contrast, 2ω (527 nm) pulse better for fast-ignition?
• High contrast pulse vs. one with pre-pulse
• Not possible to directly measure what happens in the LPI
• Fielded wide array of diagnostics for indirect measurements
• Can we simultaneously reproduce ALL these results within a single simulation to better constrain the pre-pulse effects?
• If so, then more confidently read out quantities of interest using well benchmarked simulations
We create a high contrast pulse with optional pre-pulse to study relationships between LPI and hot-electron source and transport.

LLNL’s Jupiter Laser Facility

- **2ω Titan Short Pulse**

1. Specular reflectivity/absorption
2. Time resolved specular pulse
3. Electron transport

λ₀ = 527 nm (2ω)

- **τ_{FWHM} = 600 fs**
- **E_{total} = 50 J**
- **x_{FWHM} = 8 µm focal spot**
- **I_{peak} = 5 x 10^{19} W/cm² (a₀=3.2, E_p=1.2 MeV)**

(Optional 3 mJ / 3 ns pre-pulse)
Specular reflectivity ~2x higher for no pre-pulse

- No Pre-pulse
- 3 mJ Pre-pulse

- Speckled Features 25-40% Reflectivity
- Smoother beam profile 10-15% Reflectivity
Large red-shift (~2.5%) on the rising edge of specular beam with injected pre-pulse.

Early red shift previously observed with λ₀ = 1 µm interaction attributed to Doppler shift from electron density profile steepening.

* Ping et al, submitted to PRL
Electron beam divergence from K_α images

Spherically bent Bragg Crystal
[8048 ± 2.6 eV]
Increased K_α divergence (~60%) with injected pre-pulse.

- No pre-pulse
- 3 mJ pre-pulse
- 25° Full Angle
- 40° Full Angle
Full scale LPI 2D3V fully collisional kinetic PIC simulations in LSP* to gain further insight about pre-plasma effects

LASER:
- Polarized in the plane
- $\lambda_0 = 527 \text{ nm} (2\omega)$
- $T_{\text{FWHM}} = 700 \text{ fs}$
- $x_{\text{FWHM}} = 8 \mu\text{m}$ focal spot
- $I_{\text{peak}} = 4.6 \times 10^{19} \text{ W/cm}^2$

SIMULATED DIAGNOSTICS:
- 1. Unabsorbed light fraction
- 2. n_e profile steepening
- 3. Cu K_α divergence

Pre-plasma environments chosen using the reflectivity data

Simulated motion of critical surface consistent with rising edge red shift seen in specular pulse

Experimental Results
No pre-pulse: $\Delta \lambda / \lambda_0 < 0.5$
3 mJ pre-pulse: $\Delta \lambda / \lambda_0 \approx +2.5$

Simulation Results
$L = 1.3 \ \mu m$: $\Delta \lambda / \lambda_0 \approx +1.4$
$L = 3 \ \mu m$: $\Delta \lambda / \lambda_0 \approx +5$
Increased simulated $K_α$ divergence (~40%) with increased pre-plasma.

Experimental Results
- No pre-pulse: 25°
- 3 mJ pre-pulse: 40°

Simulation Results
- $L = 1.3 \, \mu m$: 35°
- $L = 3 \, \mu m$: 50°
Very good agreement between experimental and simulation trends with increasing pre-plasma.

- Full scale target simulation with self-consistent LPI and electron transport.
- With increasing pre-plasma, in both experiment and our modeling we observe:
 - Decreased reflectivity
 - Increased critical density movement
 - Hotter source electron energy spectrum
 - Increased Cu K_α divergence
- Pre-plasma only unknown in simulation.

For further insight into pre-plasma effects on experimental observables, we complete the restraint on the pre-plasma environment by simultaneous diagnostic matching.
Kα imager data can be misleading

Approx. half the collection efficiency of deeper fluors

Short pulse (100 fs) simulations used to determine pre-plasma environment by matching specular data.

- **No pre-pulse:**
 - Experimental reflectivity ranged from 20-30%

- **3 mJ pre-pulse:**
 - Experimental reflectivity ranged from 10-15%

Still determining whether or not this result is physical.

Long pulse results:
- $L = 1.3\mu m$, 30% reflectivity
- $L = 3\mu m$, 24% reflectivity
Increased Cu K$_{\alpha}$ FWHM divergence (~50%) with injected pre-pulse

No Pre-Pulse

3 mJ Pre-Pulse

Data normalized to peak value
Escaped electron energy spectrum is ~30% hotter with injected pre-pulse

As measured in vacuum, related to LPI born electrons*

$kT_{ave} \approx 1.5\pm0.3\ MeV$

$kT_{ave} \approx 2.0\pm0.3\ MeV$

* Link et al, Phys. Plasmas 18, 053107 (2011)
Time integrated simulated SOURCE electron energy spectrum ~20-40% hotter with increased pre-plasma pre-plasma.

\[kT = 5.6 \text{ MeV} \]
\[kT = 7.8 \text{ MeV} \]

\[kT = 2.1 \text{ MeV} \]
\[kT = 2.5 \text{ MeV} \]

\[kT = 5.6 \text{ MeV} \]
\[kT = 7.8 \text{ MeV} \]

Complicated energy downshifting, now understood*

\[L = 1.3 \mu m \]
\[L = 3 \mu m \]

Same experimental trend observed, however consistently hotter than what was measured

* Link et al, Phys. Plasmas 18, 053107 (2011)