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Motivation: Can we isochorically heat up RMT targets to high temperatures?
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Considerable interest in isochoric heating of solid density plasmas to uniform
temperatures for opacity, equation of state, and material properties measurements



Results from Experiments with the Vulcan laser
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[1] G. Gregori et al., Contrib. Plasma Phys. 45, 284 (2005)
[2] K. U. Akli et al., Phys. Rev. Lett. 100, 165002 (2008)




Simulation Goals

 We are studying how these parameters:
— Laser Intensity
— Preplasma Scale Length
— Target Thickness

» Affect these physical phenomena
— Average Target lon Temperature
— Target Temperature Uniformity
— Above Solid Density lon Shock



1D: Baseline Simulation Parameters

e LSP PIC modified by OSU HEPD group.
* All Particles Fully Kinetic
* Cell size A/16 and 37um long grid

* 6+ ionized copper 5um target, with 20um of
preplasma of varying scale lengths including one

from Habara et al.[3]

* A= 1um, varying intensity, 1 ps duration Sin? pulse

* Timestep of 60 timesteps/optical cycle

Pre-Plasma From Habara et al.3!
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[3] Habara et al. Phys. Rev. E 70, 046414 (2004).
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1D: Intensity Variation- 5um Thick Target
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[4]Sentoku et al., Phys. Plasmas (2009) [5]Silvia et al., Phys. Rey, Lett. (2004) [6]Wilks et al., Phys. Rev. Lett. (1992)
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Little density variation between intensities until a shock is generated.



1D: Average lon Temperature Vs. Laser Intensity

Average lon Temperature after 5ps
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Large increase in intensity (energy) required to double temperature.



1D: Preplasma Scale Length Variation

Run at intensity of 5x10%°

Average lon Temperature at 5ps
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The scale length needs to be short to achieve the best heating



Moving From 1D To 2D

* The issue of heating uniformity is more
realistically treated in 2D.

e 2D Simulation parameters

— Cell size A/16 for most of the grid including laser
and target.

— Target width 100um in the transverse direction
— Laser spot FWHM 5um.

— Preplasma from Habara et al. which is likely similar
for the RAL experiment.
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The center of the 2D target correlates well with the 1D target.
We see similar requirements of intensity, pre-plasma for a shock.



2D: Density Spatial Variation and Evolution
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* Targets of different thicknesses
appear to evolve similarly, but

at different rates.

* Time-integrated diagnostics

will average over this.
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2D: lon Temperature Vs. Transverse Position
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2D: lon Temperature Vs. Transverse Position
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Conclusions

* Our simulations suggest that for a given laser pulse
there is target size that achieves best heating of the
target over the largest volume.

* Shocks play an important role in this process.

 We found 1D sims. show good correlation with the
center of 2D targets, but there are phenomena that
show up at later times in 2D that are not present in 1D.

Next:
e Can uniformity be improved?
* Improve simulations, run to longer times.

e Compare to hydro simulation using FLASH, HYDRA.



