Modification of high intensity laser plasma interaction by Stimulated Raman Scattering

AG Krygier

DW Schumacher, RR Freeman The Ohio State University

High Energy Density Physics Group Scarlet Laser Facility

This work was supported by the U.S. DOE under contracts DE-FC02-04ER54789, DE-FG02-05ER54834, and allocations of computing time from the Lawrence Livermore National Laboratory Institutional Computing Grand Challenge program

Laser Interaction Critical to HEDP

2D PIC (LSP) Simulations

Start with uniform (2*10720 cm)-3) underdense plasma

Raman scattering generates plasma waves

Take radiation spectrum in vacuum at later time

Plasma wave is from Raman scattering

 $\omega \downarrow L = \omega \downarrow P + \omega \downarrow R$

Plugging in values:

 $\omega \downarrow R / \omega \downarrow L \cong 0.7$

2

1.5

Look at more realistic cases now

E

Start with $L = 5 \mu m$

0.5

0

-0.5

-1

Red =
$$n \downarrow c /4$$

Green = $n \downarrow c$

Axes move with laser

$L = 10 \mu m$

0.5

0

-0.5

-1

Raman starts at slightly lower density due to longer scale length

Main interaction still occurs near *nJc*/4 resonance

So What?

Conclusions

• Raman scattering important for $L \ge 5 \mu m$

• Transition to chaotic behavior spurred on by Raman for $L \ge 5 \mu m$

