Using K_α images to characterize pre-plasma and electron refluxing in intense laser experiments

V.M. Ovchinnikov
The Ohio State University

2011 Fall Meeting of the DPP APS
Salt Lake City, UT
November 17, 2011
Collaborators

R. Stephens

F.N. Beg, S. Chawla, D.P. Higginson, C. Jarrot, C. Murphy, H. Sawada, M.S. Wei, B. Westover, T. Yabuuchi

R. Fedosejevs, H. Friesen, Y. Tsui
Motivation

- Angular distribution of laser generated hot electrons is crucial.
- Recent experimental measures of the divergence vary widely.
- K_α imaging is a primary experimental measure.
- PIC simulations tend to indicate a large \textit{intrinsic} divergence in the LPI region ($\alpha_{1/2} = 50-60^\circ$).

This talk will show how a large intrinsic electron divergence can result in varying divergences as measured by K_α imaging.
We’ve shot slabs and buried cone targets.

Cone-guided Fast Ignition:

Bragg crystal

Buried cone target with a Get-Lost Layer (GLL)

Kα image of a buried cone target
Recent Titan Results: K_α imaging

2009 Run: Buried Cone Results. \(\omega_{1/2} = 40-45^\circ \)

- **20090826 s02**
 - 30 \(\mu \)m tip, fluor depth: 10 \(\mu \)m
- **20090826 s04**
 - 30 \(\mu \)m tip, fluor depth: 100 \(\mu \)m
- **20090826 s05**
 - 90 \(\mu \)m tip, fluor depth: 10 \(\mu \)m
- **20090826 s06**
 - 90 \(\mu \)m tip, fluor depth: 10 \(\mu \)m

Detector used: X-ray CCD

2010 Run: Buried Cones Results. \(\omega_{1/2} = 12-15^\circ \)

- **20100726 s02**
 - 30 \(\mu \)m tip, fluor depth: 10 \(\mu \)m
- **20100726 s04**
 - 90 \(\mu \)m tip, fluor depth: 10 \(\mu \)m
- **20100726 s06**
 - 30 \(\mu \)m tip, fluor depth: 100 \(\mu \)m

Detector used: Image Plates
Simulation setup for the 2009 experiment

Fully kinetic simulations, using modified PIC code LSP

(1) TARGET
Buried cone target
(30° cone angle)
Exponential preplasma

(2) GRID
2D Cartesian (XZ)
Cell size: from $\lambda/8$ to λ

(3) LASER
$\lambda = 1 \mu m$
$I = 1 \times 10^{20} \text{ W/cm}^2$
$w_o = 7 \mu m$
sine2 envelope w/
$\tau = 700 \text{ fs}$
propagates along $+x$
z-polarized

(4) RUN DURATION
~20 ps
with $\Delta t = 30$ timesteps/optical cycle

Preplasma scale length is the only free parameter
Simulation vs. 2009 Experiment: \(L = 5 \, \mu m \)

Red – simulation
Grey - experiment

a) fluor depth: 10 \(\mu m \)

Preplasma scale length \(L=5 \, \mu m \)
Simulation vs. 2009 Experiment: $L = 2.5 \, \mu m$

Red – simulation
Grey - experiment

a) fluor depth: 10 \, \mu m

b) fluor depth: 100 \, \mu m

Preplasma scale length $L=2.5 \, \mu m$
Preplasma scale length $L = 3.75 \, \mu m$
Effect of the Get Lost Layer

Red – simulation
Grey - experiment

Preplasma scale length L=3.75 μm (no GLL)
Simulation vs. experiment for a slab with no GLL

Slab target, no GLL
Experimental results for 2010 experiment

\[\sqrt{\frac{1}{2}} = 12-15^\circ \]

- **a)** 15 µm fluor depth
- **b)** 100 µm fluor depth
- **c)** 200 µm fluor depth
Noise issue in IP-based images

This is what we would have measured in 2009, had we had used image plates.

Note, the pedestal is hidden!
Simulations for 2010 experiment

Preplasma scale length: \(L = 2.5 \, \mu m \)

Red – simulation
Grey - experiment
Slab targets with GLL
Slab results

Preplasma scale length: \(L = 1.75 \, \mu m \)

Red – simulation
Grey - experiment
Summary

- Good match between experiment and simulation.
- Wide range of targets using data collected with 2 different detector types over 2 years.

We find that K_α images
- provide a poor measure of intrinsic divergence.
- yield a bulk divergence angle that is low compared to intrinsic.
- can characterize the pre-plasma near the critical surface.
- can be used to check the performance of GLL’s.

K_α images can still be used to benchmark PIC codes from which the intrinsic divergence can be determined.
Thank you!